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Abstract

A large number of factors can affect the statistical power and bias of analyses of data from
large cohort studies, including misclassification, correlated data, followup time, prevalence
of the risk factor of interest, and prevalence of the outcome. This paper presents a method
for simulating cohorts where individual’s risk is correlated within communities, recruitment
is staggered over time, and outcomes are observed after different followup periods. Covari-
ates and outcomes are misclassified, and Cox proportional hazards models are fit with a
community-level frailty term. The Cox proportional hazards model is shown to produce
unbiased tests in the presence of the aforementioned factors, and the effect on study power
of changing various variables is shown.
Keywords: power calculations; survival models; correlated data; large cohort studies; nested
case-control studies.

1 Introduction

Increasingly large cohort studies are being undertaken by epidemiologists in order to identify
genetic and environmental risk factors for chronic diseases. Kaplan (2007) describes the mo-
tivations and limitations of Very Big Epidemiology, and states that the dominant motivation
in undertaking such studies is obtaining sufficient statistical power to detect sometimes mod-
est main gene effects as well as gene-environment and gene-gene interactions. Kaplan (2007)
finds Burton et al. (2008)’s result that it will take up to 40 years to collect sufficient cancer
cases in the 500,000 strong UK Biobank to detect gene-environment interactions disquieting,
and points out that there is considerable uncertainty in the calculations.

A conventional power analysis, computing the expected number of incident cases and ap-
plying a contingency-table based power formula (see Woodward, 1999, ch. 8), would disregard
key elements of the inferential complexity that arise from various aspects of the design, con-
duct and analysis of large cohort studies. Burton et al. (2008) use a simulation-based method
for power calculations which accounts for: misclassification of covariates and outcomes; in-
dividual level variation in risk; and the effect of prevalence of the genetic and environmental
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risk factors. Logistic regression is then used to perform inference on the parameters and the
detection rate based on multiple simulations recorded.

This paper builds on the work of Burton et al. (2008) by developing a data analysis and
power calculation methodology for the Ontario Health Study (OHS), a large cohort study
investigating cancer and other chronic diseases. Currently recruiting participants, the OHS
has a number of particular features and requirements necessitating careful statistical consid-
eration. First, study participants will be sampled within communities with community-level
environmental effects and random variation being a key component of the research questions
to be considered. Second, followup times will be irregular due to staggered recruitment and
censoring of observations due to non-cancer related deaths. Third, due to the high cost
associated with genotyping blood samples, nested case-control analyses are likely to be used
for a number of sub-studies.

These requirements resulted in developing a simulation methodology where each sim-
ulated cohort involves assigning individual’s age, sex, and community. Community-level
random variation around observed cancer rates is used to simulate cancer incidence dates
and non-cancer death rate data is used to assign dates of removal from the cohort. A Cox
proportional hazards survival model is used for parameter inference, with left truncation
due to age at recruitment and right censoring from the end of followup periods or earlier
removal from competing events (see Lawless, 2003). A frailty term allows for dependence
within communities, and a subsample of the cancer-free individuals are considered for the
nested case-control analyses.

This paper describes and illustrates the proposed power calculation methodology, using
results to demonstrate the statistical consequence of various assumptions and design issues.
More epidemiologically-focused treatments of the assumptions and implications for study
design will hopefully build on this research and follow in due course. Section 2 describes
the simulation and inference methods in detail. Section 3 presents results for one of the
most common cancers (colorectal or bowel cancer) and the much rarer cancer of the stomach
for both cohort and nested case-control study. Section 4 discusses the implications of the
results for statistical power calculations and more rigorous epidemiological applications of
the methodology.

The software developed and used for this project as been released as an R package and is
available at r-forge.r-project.org/????.

2 Methods

Each power calculation can be divided into three stages: defining the cohort; simulation of
cancer incidence and non-cancer deaths; and model fitting. The total sample size was fixed
at 150000 but can of course be varied. Population figures used are from the 2001 Census of
Canada, and rates for cancer incidence and non-cancer deaths were taken from the Ontario
Cancer Registry for the year 2004 (the most recent available at the time).

The parameters which need specifying a priori to simulate a cohort are: the total sample
size N , the number of communities sampled M , the prevalences of the genetic and environ-
mental risk factors π1 and π2, the misclassification rates for these risk factors θ1 and θ2, the
community level random effect variation σ2, the individual level random variation τ 2, and
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the genetic, environmental, and gene-environment interaction effect sizes β1, β2, and β3. The
age and sex distribution of the population by region, baseline incidence rates, death rates for
causes unrelated to the event of interest, the schedule for subject recruitment, and the age
of the target population are also required. This gives 11 parameters to vary, in addition to
which population and recruitment profiles, followup times, significance levels, and methods
of allocating individuals to communities can also be changed.

2.1 Cohort Simulation

The first task is defining the community each individual in the cohort belongs to. For
the purpose of this exercise a community was taken as one of 183 census sub-divisions in
Ontario, which roughly correspond to administrative municipalities, containing at least 3000
individuals in the target age-range of 35 to 69. The number of communities in the study,
M , was varied between 40 and 100 but equal to 50 unless otherwise specified. The number
of participants Ni in community i is, depending on the design under consideration, either
constant at Ni = 150000/M for a balanced design or with Ni proportional to the community’s
population size for an unbalanced design. The sex and 5 year age group of each individual
at the time of recruitment are simulated according to the population distribution within
that community (aged 35 - 69) with replacement. A continuously valued age eij is simulated
uniformly within the census age groups.

As recruitment into the study will be phased in over 4 years, the time of enrolment in the
study is needed to allow for differing follow-up times for each individual. It is anticipated
that 20000, 40000, 50000 and 40000 participants will be recruited by the end of year 1, 2, 3
and 4 respectively. Year of enrolment is simulated in proportion to the anticipated number
recruited for that year, and time within the year simulated uniformly.

Individual j in community i is then ascribed a genetic risk factor Xij1, and the community
is given an environmental risk factor Xi2, which are binary-valued and present with prob-
abilities π1 and π2 respectively. The covariates are then misclassified to produce observed
covariates X̃ij1 and X̃i2 which are different from the true covariates with probabilities θ1 and
θ2 respectively.

Incidence rates for the cancer of interest are calculated by dividing the total incidence
count for the province by the total population of the group. Age groups are intervals of 5
years, with the exception of the oldest group being age 80 and above. The baseline rates λ̂f (t)

and λ̂m(t) at age t for females and males respectively, are then used to compute individual
rates after accounting for fixed and random effects. An individual’s risk function λij(t) for
individual j in region i is computed as:

λij(t) =λ·(t)Rij

log(Rij) =Xij1β1 +Xi2β2 +Xij1Xi2β3 + Ui + Vij − (σ2 + τ 2)/2

Ui ∼N(0, σ2).

Vij ∼N(0, τ 2)

Xij1 ∼Bern(π1)

Xi2 ∼Bern(π2),
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with λ· being λf or λm depending on the sex of the individual concerned. Here β1, β2, and
β3 are the effect sizes of gene, environment, and interaction effects respectively. The Ui

and Vij terms are the community level and individual level random effects, allowing different
cancer rates for each individual and some similarity between two individuals within the same
community. Half the total variance σ2 + τ 2 is subtracted from the risk so that E(λij) = λ·(t)
for the baseline group, and this expectation would increase with the variance of the random
effects were the subtraction not made.

2.2 Cancer incidence

Simulation of cancer incidence of a particular type (i.e. colon cancer) is accomplished by
simulating three events in turn: non-cancer death dates; possible incidence of cancers other
than the specific cancer of interest (i.e. cancer other than colon cancer) between recruitment
and non-cancer death; and possible incidence the cancer of interest prior to other cancer
incidence.

Non-cancer death figures for Ontario are calculated by subtracting the cancer deaths from
the total deaths by age and sex group for 2004. A Weibull distribution is fit to the male and
female data separately, giving scale and shape parameters ψ̂m, ν̂m for males and ψ̂f and ν̂f
for females. An individual’s non-cancer death date dij is simulated as

Dij ∼Weibull(ψ̂·, ν̂·)

with the parameters for males or females substituted according to the sex simulated for
the participant. Conditioning on survival up to the age of enrolment is accomplished by re-
drawing any death dates which occurred before the age of enrolment. A parametric Weibull is
used instead of simulating from the empirical distribution of death data because of difficulties
in estimating the tails at the highest ages where data are sparse.

The non-cancer death times can be interpreted as the age of death which each subject
would have experienced were it not for cancer onset. Cancer incidence unrelated to the
cancer site of interest and the age of onset (if any) is simulated based on the probability of
contracting the cancer of interest between the age at recruitment and the age of non-cancer
death. These dates are simulated using the population average rates for all other cancers by
5 year age and sex group, and not using the relative risk λit. The time of removal from the
cohort, dij, is either the non-cancer death date or the “unrelated” cancer incidence data if
present.

An individual’s age at first cancer of interest Yij is simulated as a Poisson process in time
with rate λij(t). Numerically, this was accomplished by simulating a number of potential
first cancers Nij between the age of enrolment eij and the ‘removal’ date dij as

Nij ∼ Poisson

(∫ dij

eij

λij(u)du

)
.

If Nij = 0, then no cancer incidence is recorded, with Yij = dij and the censoring variable
is coded as Zij = 1. When Nij is positive, Nij events are independently simulated from
a density proportional to λij(t) between eij and dij, Yij is set to earliest value drawn, and
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Zij = 0. Care should be taken not to interpret the multiple events simulated when Nij ≥ 2
as multiple cancer incidences. The rates λij(t) are for first cancer incidence, and second and
subsequent cancers can be different biological processes from the first. The procedure above
is simply a mathematical solution to generating first incidence times.

Each cancer of interest was deemed to have been missed with probability φ2 independent
of age, and the removal date dijreinstated.Eachindividualwithnocancereventisgivenafalsecancerwithprobabilityφ1

times the , with the age of the false cancer being uniform from the age of enrolment eij and
death dij. Each individual with a cancer event has that event removed with probability
φ2 and their event date set to their death date Yij = dij (and censoring variable Zij = 1).
Gene and environment effects are misclassified (switched from a 0 to 1 or vice versa) with
probabilities ψ1 and ψ2 respectively.

For each simulated (real or false) cancer event, a cancer site Sij (i.e. colorectal, stomach,
lung . . . ) was simulated with probabilities proportional to the number of cancers recorded
in 2004 at that site, in the age and sex group of the individual concerned.

2.3 Parameter values

The results presented in Section 3 use a baseline set of parameter values and graph effect
on power of changing one parameter at a time. The baseline parameter values are based
on those used by Burton et al. (2008) and give roughly 70% power for detecting an effect
on colon cancer after 20 years of followup, and are varied to show a range of low and high
powers. Unless otherwise specified, the gene, environment, and gene-environment effects
had relative risks of β1 = 1.5, β2 = 1.5, and β3 = 2 respectively; and the prevalences of
the individual level genetic and communities level environmental risk factors were π1 = 0.2
and π2 = 0.3 and ascribed to individuals rather than communities. Recruitment reflected a
current proposal for the study, with an age range of 35 to 69 years; the design was unbalanced
with 50 communities; the sample size is 150000; and the number of individuals recruited is
20000, 40000, 50000 and 40000 in each of years 1 to 4 of the study.

Motivated by Burton et al. (2008), we take σ2 + τ 2 = 0.35 resulting in the 5% most sus-
ceptible of the population having 10 times the relative cancer risk of the 5% least susceptible.
The proportion of variation in risk attributable to the community level to individual level
σ2/(σ2 + τ 2) is 20%, chosen as a moderate value between the close to zero power observed
with 50% community variation and nearly 100% power resulting from independent samples
demonstrated in Figure 4b.

The cancer false positive and missed cancer probabilities are φ1 = 0.00045 and φ2 = 0.15
respectively, which combined with the assumption that 2% of the subjects will contract
cancer (of any type) throughout the course of the study gives a specificity of 97% as used by
Burton et al. (2008). The misclassification rates for gene and environment risk factors are
ψ1 = 0.1 and ψ2 = 0.1, which more optimistic than the 0.2 value used as a baseline in Burton
et al. (2008). This greater confidence in the environmental measurement was chosen to reflect
the relative ease in collecting environmental information for a small number of communities
rather than at the individual level. The lower genetic misclassification was chosen to be
roughly in line with past experience with simple presence/absence genetic traits.

The significance level of 0.001 was used as a compromise between the 0.05 or 0.01 level
that would be the standard values for analyses of environmental effects and the much smaller
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p-values of 10−4 or 10−7 often used in genetic studies as a result of multiple testing.

2.4 Data Analysis

For each simulated cohort, data were analysed at follow-up periods of 5, 10, 20 and 30 years.
For a given cancer site S and followup time F , each individual’s event time Ỹij and censoring
indicator Z̃ij are constructed as follows.

Event : The individual had cancer at the site in question within the followup period when
Zij = 0, Sij = S, and Yij − eij ≤ F . This gives Ỹij = Yij and Z̃ij = 0.

Censored from competing event : An event within the followup period was unrelated
to the outcome of interest effectively withdraws the subject when Yij − eij ≤ F , and
either Sij 6= S or Zij = 1. This gives Ỹij = Yij and Z̃ij = 1.

Censoring from the end of followup : When there was no event during the followup
period (Yij − eij > F ), we set Ỹij = eij + F and Z̃ij = 1.

A Cox proportional hazards model (see Lawless, 2003) is fit to the resulting data of left
truncation times eij, event times Ỹij and censoring indicators Z̃ij. This model is similar to
that used to simulate the data, with the difference that the baseline intensities λ·(t) are not
estimated but rather a profile likelihood which does not depend on λ·(t) is used to estimate
the other parameters. Here we assumed each individual’s hazard function has the form

λij(t) =λ·(t) exp
(
µ+X ′ijβ

)
Ui

Ui ∼Gamma(1/ν, ν)

Here Ui is a Gamma-distributed frailty term, allowing for similar hazard rates for individuals
from the same community. Notice that an individual random effect term was not included,
as there is only one observation per subject and individual-specific terms are not identifiable.
The vector of covariates Xij contains indicator variables for gene, environment, and their
interaction.

For nested case-control analyses, a subset of the individuals not exhibiting the outcome
of interest during the followup period was randomly selected with equal probabilities. The
coxph function in R is used for model fitting and inference, using the default options (Gamma
distributed frailty, EM estimation, zeros as initial values, with the Efron method for ties).
Other inference methods could be considered (see Xu & Donohue, 2008), in particular for
the case-control analysis (i.e. Gorfine et al., 2009), and the exact inference method might
vary depending on the specific research questions considered in the future.

For each analysis, the p-values for each parameter are recorded. For each set of parameter
values, 500 datasets are simulated and each dataset analysed at each followup period. The
power for each β parameter is computed as the proportion of p-values below the significance
level 0.001. In addition to simulating data with positive effect values for the β, the type 1
error rate was assessed by simulating data with no effect (β = 0) and the proportion of p-
values below 0.001 as recorded. An unbiased inference procedure should have uniformly
distributed p-values in this case and the proportion of significant p-values equal to the
significance level.
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The community-level fixed effect could not be estimated from a surprising number of
simulations due to singular design matrices. The problem was most pronounced when the
variance of the community-level random effect was large, the followup period was long, and
the prevalence of the cancer of interest was high. An automated procedure for overcoming
this problem, suitable for including in a loop of thousands of simulations, became necessary.
When this problem occurred, 5% of the individuals without events in the followup period
were removed randomly. If singular design matrices resulted from 10 different subsamples,
then a nested case control design was used samling 8 controls per case. If 40 such analyses
still produced singular matrices, equal numbers of cases and controls were used with the
samling repeated until a non-singular design matrix resulted. The choice of 8 controls per
case resulted from the results in Figure 5 showing that power with this number of controls
is generally as high as power from the full cohort. Using the baseline parameter vaules, 100
simulations resulted in 5% resampling performed sucessfully 4 times, 8:1 case control design
necessary and successful 10 times, and 1:1 case control designs used 6 times.

3 Results

The following figures illustrate the effect on power of variations in some of the model param-
eters. More extensive results are available from the authors on request.

Years Colon Stomach
F M F M

5 33 ( 20 , 45 ) 52 ( 37 , 71 ) 4 ( 0 , 8 ) 9 ( 4 , 16 )
10 144 ( 109 , 185 ) 207 ( 158 , 257 ) 16 ( 8 , 24 ) 38 ( 26 , 52 )
20 556 ( 455 , 678 ) 685 ( 540 , 817 ) 63 ( 44 , 82 ) 123 ( 94 , 155 )
30 1095 ( 913 , 1299 ) 1221 ( 1004 , 1462 ) 125 ( 96 , 157 ) 221 ( 177 , 266 )

Table 1: Average incidence numbers (with 95% prediction intervals) for male and female
colon and lung cancer after various followup periods.

Table 1 shows the distribution of the number of colon and stomach cancer cases simulated
at various followup periods, and the variations in power by cancer type and followup period
should be interpreted in conjunction with these incidence numbers. The baseline parameter
values were chosen to give roughly 70 % power for detecting a gene-environment interaction
after 30 years of followup for colorectal cancer, which encompasses between 2000 and 2800
simulated cases. While colon cancer is one of the four most common cancers, stomach cancer
is rarer and is included to illustrate the effect of disease incidence rates on study power.

3.1 Type 1 error rate

The following graphs show the type 1 error rate, obtained by simulating cohorts with no gene,
environment, or interaction effects and fitting Cox proportional hazards models with such
effects included. Rejecting the null hypothesis of no effect more often than the significance
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Figure 1: Type 1 error rate relative to the significance with levels of 0.05 ( ), 0.01 ( - - -
), 0.001 ( ) for colorectal cancer after 30 years of followup.

level of 0.001 that is undesirable and indicates a high “false positive” possibility of finding
effects which are non-existent. With the total number of communities fixed at 50, Figure
1a shows the type 1 error rate varying as the proportion of variation risk at the community
level σ2/(σ2 + τ 2) increases. Significance tests for individual level genotype effects, group
level environment effects, and interactions appear to be unbiased, with the type 1 error rate
fluctuating around the value expected. To reveal the accuracy and efficiency of a nested
case-control design, Figures 1b shows type 1 error rate as a function of different numbers
of controls per case. Again, significance testing of all effects are unbiased, with the possible
exception of the group-level environment with small numbers of controls.
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3.2 Relative risk
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Figure 2: Power as a function of effect size for the gene-environment interaction effect, for
stomach cancer and colorectal cancer. Follow up times of 5 ( ), 10 ( - - - ), 20 ( ), 30 (
· · · ) years. Significance level is 0.001.

Figure 2 shows the power for detecting an individual-group interaction as a function of the
effect size and followup time. Colorectal cancer, being one of the most common cancers, has
much higher power than the much rarer stomach cancer. As expected, power increases with
effect size and with followup time, with the biggest jump being between 10 and 20 years
when relative risk is greater than 2.0. Effect size, as expected, has a large impact on power,
though even large effect sizes don’t appear to produce adequate power when the number of
cases is small due to short followup (10 years or under) or low prevalence (stomach cancer).
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3.3 Prevalence and Misclassification
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(b) Environmental misclassification rate

Figure 3: Power as a function of genotype prevalence and the probability of an individual’s
environment being misclassified, for the gene-environment interaction effect, for colorectal
cancer. Follow up times of 5 ( ), 10 ( - - - ), 20 ( ), 30 ( · · · ) years. Significance level is
0.001.

Greater prevalence of risk factors and lower misclassification of risk factors and cancers in-
crease power substantially, and the result of varying some of these parameters are shown
in Figure 3. Figure 3a shows power as a function of genotype prevalence for the gene-
environment interaction effect on colorectal cancer. Again, followup times of 5 or 10 years
show little power regardless of other parameter values. Power rises fairly steeply with preva-
lence, with power jumping from under 40% to over 70% after 30 years when prevalence
increases from 10% to 20%. Figure 3b shows the power (colorectal, gene-environment) as a
function of the probability of an individual’s environment being misclassified. A misclassifi-
cation above 10% results in low power regardless of the followup time.
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3.4 Community effects and power
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Figure 4: Power for detecting a community-level environmental effect on colorectal cancer
after 30 years of followup, with a balanced ( — ) or unbalanced ( - - - ) allocation of
individuals to communities, as a function of the number of communities. Significance level
is 0.001.

Figures 4a and 4b show the power for detecting a community-level environmental effect
on colorectal cancer as a function of the number of communities and the proportion of
residual variation at the community level, or σ2/(σ2 + τ 2). By allocating the environmental
risk factor to communities, rather than to individuals, it would be expected that varying
the number of communities or the effect of communities would have a bigger effect on the
power of detecting a community-level effect than on an individual-level effect or on the
interaction term. Two different sampling methods are compared: a balanced design with
an equal number of subjects per community; and an unbalanced design with a random
number of subjects per community (varying between simulations) and sampling probabilities
proportional to each community’s population.

Figure 4a shows that increasing the number of communities increases power for both
balanced and unbalanced designs. Both designs perform similarly when the number of com-
munities is small, with balanced sampling resulting in much higher power when the number
of communities is large. Figure 4b keeps the total variation in risk σ2 + τ 2 constant, but
changes σ2/(σ2 + τ 2), the proportion of the residual variation which is at the community
level. High values of this proportion correspond to strong correlation between individuals in
the same community. The dependence has a strong effect on the power, and as the number
of communities is fixed at 50 the balanced design achieve higher power than the unbalanced
one especially when the correlation between individuals in the same group is low.
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3.5 Nested Case-Control
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Figure 5: Power for detecting the genetic and the gene-environment interaction effect for
colorectal cancer in a nested case-control study with various proportion of controls after 30
years of followup. Significance level is 0.001.

Figure 5 shows, for a nested case control study, the power for detecting the genetic and
gene-environmental interaction effect as a function of the number of controls. The number
of controls varies from 0.8 per case to 8 per case, with the power for the full cohort shown
as the rightmost point. For the smallest effect sizes, power continues to increase with the
number of cases, even beyond 4 controls per case. For the largest effect sizes, 4 controls per
case are sufficient to achieve the same power as the full cohort does.

4 Discussion

This paper has demonstrated the effectiveness of a data analysis and power calculation
methodology for large cohort studies with within-community dependence and varying ages
and followup. The inclusion of a frailty term in a Cox proportional hazards survival model
produced unbiased significance tests whereas, unsurprisingly, fitting a survival model without
a frailty term was prone to detect significant effects when none existed (results not shown).
Increasing dependence (Figure 4) or introducing misclassification of explanatory variables
(Figure 3b) and outcome variables (not shown) reduce power but do not increase the Type
1 error rate.

Perhaps the contribution of most immediate practical use for the Ontario Health Study
and other similar cohorts regards the effect of varying the number of controls in nested
case-control studies. While the total sample size and number of communities in the OHS
has necessarily been determined by financial and operational constraints, decisions on the
amount and nature of genotyping to be done will be made at a later date and may vary
between the various sub-studies. The number of controls required to obtain sufficient power,
under a variety of assumptions and significance levels, can help determine future funding
requirements and justify resource allocations.
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While most of the power calculations presented here are intuitive (more cases, larger
effects and higher risk factor prevalence result in higher power), there is room for more
careful consideration of the subtleties involved in nested substudies. An upper bound for the
power of a nested substudy is obtained by calculating the power of the full cohort, and Figure
5 shows that the benefit of adding additional controls is negligible in some circumstances,
though a genotype effect of 1.5 shows continued benefit of adding controls beyond even the
ratio of 8 to 1. Deliberately oversampling controls in the age groups where cases are more
common is likely to result in higher power than the random selection of controls presented
here, and one to one matching on age, community, and followup time could result in a yet
more powerful logistic regression analysis. However, the more use is made of matching the
greater the risk of bias due to unintentionally matching on the variable of interest (see i.e.
Hein et al., 2009). Further, the inclusion of time-varying covariates (such as smoking status)
complicates inference further (see Leffondre et al., 2003) and power and bias for such analyses
should also be checked with simulations. Finally, nested case-cohort studies have not been
considered here, and a comparison of case-control and case-cohort methods with dependent
time-to-event data would be of further value in planning large cohort studies.

More generally, comprehensive power calculations allowing for a wide variety of factors,
including community- or family-level dependence, will be a necessary component of inter-
preting the analyses of genotype and disease incidence data from large cohort studies. There
are studies which have convincingly identified or replicated genetic and environmental as-
sociation for a range of chronic diseases, though the conclusions are often inconsistent (see
Rebbeck et al., 2007). In addition to possible scientific and technical issues which can cause
spurious correlations, statistical inference methods which ignore dependence will underesti-
mate parameter uncertainty and be prone to signaling artificial effects. Conversely, overly
optimistic power calculations which ignore misclassification of outcomes and confounders
might lead to researchers being too quick to dismiss the significant findings of previous stud-
ies which are not reproduced. The methods presented here are able to partially address the
Statistical aspects of the reproducibility debate by:

• Demonstrating the unbiasedness of tests using the Cox proportional hazards survival
model and providing a method for researchers to re-check the unbiasedness of this
inference methods using values for prevalence, misclassification, and dependence which
are felt to reflect their particular circumstances; and

• Yielding power estimates which reflect a wide variety of complications which can re-
duce the chance of detecting a risk factor, including staggered recruitment, within-
community dependence, and misclassification.

Developing a more comprehensive power calculation has come at the expense of increas-
ing the number of parameters which must be pre-specified. As such, it adds to (rather
than addresses) the concerns expressed by Kaplan (2007) that such calculations are uncer-
tain. The resulting model has 11 continuous parameters required for simulating cohorts, and
although they are varied in this analysis a comprehensive treatment involving all possible
combinations of 3 values for each parameter would prove infeasible in computational time
and in interpretability. Finding sensible, scientifically sound values for all 11 parameters will
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be difficult, and even with such knowledge sensitivity to assumptions about the parameter
values should be explored.
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